Regulation of heme oxygenase activity in Cyanidium caldarium by light, glucose, and phycobilin precursors.

نویسندگان

  • G Rhie
  • S I Beale
چکیده

Cyanobacteria, red algae, and cryptophytes contain phycobiliproteins which function as photosynthetic light-harvesting pigments. The chromophores of phycobiliproteins are phycobilins, open-chain tetrapyrroles that are synthesized from protoheme. The first step of phycobilin formation is the conversion of protoheme to biliverdin IX alpha in a reaction that is catalyzed by heme oxygenase. In the unicellular red alga, Cyanidium caldarium, light is required for the accumulation of phycobiliproteins. It has been reported previously that the synthesis of the apoprotein components of allophycocyanin and phycocyanin is induced by light in C. caldarium, that the phycobilin precursors, delta-aminolevulinic acid (ALA), protoporphyrin IX, and protoheme can substitute for light, and that the regulation is exerted at the level of mRNA synthesis. We have determined that a key enzyme of phycobilin formation is induced by light in C. caldarium. Extractable heme oxygenase activity is low in dark-grown cells, and it increases approximately 6-fold during the first 24 h after the cells are illuminated. After 24 h, the activity decreases to a level approximately equal to the initial activity. Heme oxygenase is induced in unilluminated cells by administration of ALA. D-Glucose, which is known to inhibit phycocyanin accumulation in C. caldarium, inhibits the induction of heme oxygenase by light or ALA. Induction of heme oxygenase by light or ALA is blocked by cycloheximide, an inhibitor of cytoplasmic protein synthesis, but not by chloramphenicol, an inhibitor of chloroplast protein synthesis. Rifampicin, an inhibitor of algal chloroplast RNA synthesis, and gabaculine, a competitive inhibitor of ALA biosynthesis, block the induction of heme oxygenase by light but not by ALA. These results indicate that heme oxygenase in C. caldarium is induced by phycobilin precursors. The induction by light and the repression of the induction by D-glucose are probably indirect effects mediated by the effects of light and D-glucose on phycobilin precursor formation. The results also indicate that heme oxygenase is encoded by a nuclear gene and is synthesized on cytoplasmic ribosomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosynthesis of Phycobilins

The unicellular red alga, Cyanidium cddurium, synthesizes phycocyanobilin from protoheme via biliverdin IXa. In vitro transformation of protoheme to biliverdin IXa and biliverdin IXa to phycobilins were previously shown to require NADPH, ferredoxin, and ferredoxin-NADP+ reductase, as well as specific heme oxygenase and phycobilin formation enzymes. The role of NADPH in these reactions was inves...

متن کامل

Biosynthesis of Protoheme and Heme a Precursors Solely from Glutamate in the Unicellular Red Alga Cyanidium caldarium.

Two biosynthetic routes to the heme, chlorophyll, and phycobilin precursor, delta-aminolevulinic acid (ALA) are known: conversion of the intact five-carbon skeleton of glutamate, and ALA synthase-catalyzed condensation of glycine plus succinyl-coenzyme A. The existence and physiological roles of the two pathways in Cyanidium caldarium were assessed in vivo by determining the relative abilities ...

متن کامل

Photo- and Metabolite Regulation of the Synthesis of Ribulose Bisphosphate Carboxylase/Oxygenase and the Phycobiliproteins in the Alga Cyanidium caldarium.

In the eukaryotic and unicellular alga Cyanidium caldarium the synthesis of the plastid enzyme ribulose bisphosphate carboxylase/oxygenase (RuBPCase) and the light gathering proteins phycocyanin (PC) and allophycocyanin (APC) is under the control of light and glucose, which is a metabolizable carbon source for this organism. Light promotes the synthesis of these proteins while glucose has a str...

متن کامل

Algal Heme Oxygenase from Cyanidium caldarium

Enzymatic heme oxygenase activity has been partially purified from extracts of the unicellular red alga Cyanidium caldarium, and the macromolecular components have been separated into three protein fractions, referred to as Fractions I, 11, and 111, by serial column chromatography through DEAE-cellulose and Reactive Blue 2-Sepharose. Fraction I is retained by DEAE-cellulose at low salt concentr...

متن کامل

N-Methyl Mesoporphyrin IX Inhibits Phycocyanin, but Not Chlorophyll Synthesis in Cyanidium caldarium.

The ability of N-methyl mesoporphyrin IX (NMMP) to block heme synthesis by specifically inhibiting enzymic iron insertion into protoporphyrin IX was exploited to test whether heme is a precursor of the bilin chromophore of phycocyanin (PC). A strain of the unicellular rhodophyte Cyanidium caldarium which forms normal amounts of both chlorophyll (Chl) and PC in the dark was employed to avoid pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 13  شماره 

صفحات  -

تاریخ انتشار 1994